Efficient and detailed model of the local Ca2+ release unit in the ventricular cardiac myocyte.

نویسندگان

  • Thomas Schendel
  • Martin Falcke
چکیده

We present here an efficient but detailed approach to modelling Ca(2+)-induced Ca(2+) release in the diadic cleft of cardiac ventricular myocytes. In this Framework we developed a spatial resolved Ca(2+) release unit (CaRU), consisting of the junctional sarcoplasmic reticulum and the diadic cleft, with a well defined channel placement. By taking advantage of time scale separation, the model could be finally reduced to only one ordinary differential equation for describing Ca(2+) fluxes and diffusion. Additionally the channel gating is described in a stochastic way. The resulting model is able to reproduce experimental findings like the gradedness of SR release, the voltage dependence of ECC gain and typical spark life time. Due to the numerical efficiency of the model, it is suitable to use for whole cell simulations. The approach we want to use extend the developed (CaRU) to such a whole cell model is already outlined in this work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release.

The local control theory of excitation-contraction (EC) coupling in cardiac muscle asserts that L-type Ca(2+) current tightly controls Ca(2+) release from the sarcoplasmic reticulum (SR) via local interaction of closely apposed L-type Ca(2+) channels (LCCs) and ryanodine receptors (RyRs). These local interactions give rise to smoothly graded Ca(2+)-induced Ca(2+) release (CICR), which exhibits ...

متن کامل

Estimating the probabilities of rare arrhythmic events in multiscale computational models of cardiac cells and tissue

Ectopic heartbeats can trigger reentrant arrhythmias, leading to ventricular fibrillation and sudden cardiac death. Such events have been attributed to perturbed Ca2+ handling in cardiac myocytes leading to spontaneous Ca2+ release and delayed afterdepolarizations (DADs). However, the ways in which perturbation of specific molecular mechanisms alters the probability of ectopic beats is not unde...

متن کامل

Computer model of action potential of mouse ventricular myocytes.

We have developed a mathematical model of the mouse ventricular myocyte action potential (AP) from voltage-clamp data of the underlying currents and Ca2+ transients. Wherever possible, we used Markov models to represent the molecular structure and function of ion channels. The model includes detailed intracellular Ca2+ dynamics, with simulations of localized events such as sarcoplasmic Ca2+ rel...

متن کامل

Calcium Sparks in Cardiac Cells in Silico

We simulate elementary calcium release events (sparks) in a single calcium release unit in ventricular myocyte. Previously developed and tested electron-conformational model of the stochastic dynamics of RyR-channels is integrated to the calcium dynamics model in the cardiac cell. This approach allows to observe RyRs opening/closing in details on the macromolecular level during the calcium dyna...

متن کامل

A mathematical treatment of integrated Ca dynamics within the ventricular myocyte.

We have developed a detailed mathematical model for Ca2+ handling and ionic currents in the rabbit ventricular myocyte. The objective was to develop a model that: 1), accurately reflects Ca-dependent Ca release; 2), uses realistic parameters, particularly those that concern Ca transport from the cytosol; 3), comes to steady state; 4), simulates basic excitation-contraction coupling phenomena; a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome informatics. International Conference on Genome Informatics

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2010